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Abstract. An interpolating Schauder basis in the space C∞[−1, 1]d is

suggested. In the construction we use Newton’s interpolation of functions

at the sequence that was found recently by Jean-Paul Calvi and Phung

Van Manh.

1. Introduction

There is a variety of different topological bases in the space C∞[−1, 1]. The

classical work here is [14], where Mityagin found the first such basis, namely

the Chebyshev polynomials. Later it was proven in [12] and [1] that other

classical orthogonal polynomials have the basis property in this space as

well. If we apply the result by Zeriahi [18] to the set [−1, 1] then we obtain

a basis from polynomials that are orthogonal with respect to more general

measures. Following Triebel [17] (see also [2]) a basis from eigenvectors of a

certain differential operator can be constructed in this space. A special basis

in C∞[0, 1] was used in [7] to construct a basis in the space of C∞− functions

on a graduated sharp cusp with arbitrary sharpness. Recently it was shown

in [9] that the wavelets system suggested by T.Kilgor and J.Prestin in [13]

also forms a basis in the space C∞[−1, 1].
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In view of the isomorphism

C∞[−1, 1]d ' C∞[−1, 1] ⊗̂C∞[−1, 1] ⊗̂ · · · ⊗̂C∞[−1, 1]︸ ︷︷ ︸
d

([11], Ch.2, T.13) these results can be extended to the multivariate case.

Here we present an interpolating topological basis in the space C∞[−1, 1]d.

Together with [8] it gives a unified approach for constructing bases in spaces

of infinitely differentiable functions and their traces on compact sets.

A polynomial basis (Pn)∞n=0 in a functional space is called a Faber (or

strict polynomial) basis if deg Pn = n for all n. Due to the classical result

of Faber [6], the space C[a, b] does not possess such a basis.

Here we use the Newton interpolation, so the basis presented for C∞[−1, 1]

is a Faber basis. The crucial aspect in the proof is the existence of the

sequence (xn)∞n=1 ⊂ [−1, 1] with a moderate growth of the corresponding

Lebesgue constants. A sequence of this type was found recently by Jean-

Paul Calvi and Phung Van Manh in [4]. This essentially improves the au-

thor’s result [10] where, for the sequence of the Lebesgue constants, only

the asymptotic behavior exp(log2 n) was achieved.

2. Interpolating topological basis in C∞[−1, 1]d

Let X be a linear topological space over the field K. By X ′ we denote

the topological dual space. A sequence (en)∞n=0 ⊂ X is a (topological)

basis for X if for each f ∈ X there is a unique sequence (ξn(f))∞n=0 ⊂ K

such that the series
∑∞

n=0 ξn(f) en converges to f in the topology of X .

The sequence (ξn)∞n=0 of linear functionals ξn : X −→ K : f 7→ ξn(f) for

n ∈ N0 := {0, 1, · · · } is biorthogonal to (en)∞n=0 and total over X . The latter

indicates that ξn(f) = 0 for all n ∈ N0 implies f = 0.
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Given a compact set K ⊂ R and a sequence of distinct points (xn)∞1 ⊂ K,

let e0 ≡ 1 and en(x) = Πn
1 (x − xk) for n ∈ N. Let X (K) be a Fréchet

space of continuous functions on K, containing all polynomials. By ξn we

denote, by means of the divided differences, the linear functional ξn(f) =

[x1, x2, · · · , xn+1]f with f ∈ X (K) and n ∈ N0. Properties of the divided

differences (see e.g. [5]) imply the following evident result.

Lemma 1. If a sequence (xn)∞1 of distinct points is dense on a perfect

compact set K ⊂ R, then the system (en, ξn)∞n=0 is biorthogonal and the

sequence of functionals (ξn)∞n=0 is total on X (K).

Here the partial sum of the expansion with respect to the system (en, ξn)∞n=0

is the Lagrange interpolating polynomial of f, so Ln(f, x) =
∑n

k=0 ξk(f) ek,

and Ln : X (K) → Pn : f 7→ Ln(f, ·) is the corresponding projection on the

space of all polynomials of degree at most n.

We proceed to present an interpolating basis in the space X = C∞[−1, 1]

equipped with the topology defined by the sequence of norms

‖ f ‖p = sup {|f (i)(x)| : | x | ≤ 1, 0 ≤ i ≤ p}, p ∈ N0.

Let (xn)∞1 be the sequence in [−1, 1] suggested in [4]. Then, by Th.3.1 in

[4], the sequence of uniform norms of Ln, which are the Lebesgue constants

corresponding to the sequence (xn)∞1 , is polynomially bounded:

||Ln||0 ≤ C n3 log n (1)

for some constant C.

Theorem 1. The functions (en)∞n=0 form a topological basis in the space

C∞[−1, 1].
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Proof :

Since the space under consideration is complete, it is enough to show that,

given f ∈ C∞[−1, 1], the series
∑∞

n=0 ξn(f) en absolutely converges, that

is the series
∑∞

n=0 | ξn(f) | · ‖ en ‖p converges for each p ∈ N.

By the Markov inequality (see e.g. [5], p.98),

| ξn(f) | · ‖ en ‖p = ||Ln(f)− Ln−1(f)||p ≤ n2p ||Ln(f)− Ln−1(f)||0.
(2)

Let Qn be the polynomial of best uniform approximation to f on [−1, 1]

and En(f) = ‖ f − Qn‖0. By the Jackson theorem (see e.g. [5], p.219),

the sequence (En(f))∞n=0 is rapidly decreasing, that is nq En(f) → 0, as

n → ∞ for any fixed q. Thus, for each q there is a constant Cq such that

En(f) ≤ Cq n−q for all n ∈ N.

Applying (1) and a standard argument we have ||Ln(f)−f ||0 ≤ ||Ln(f)−
Ln(Qn)||0 + ||Qn − f ||0 ≤ (C n3 log n + 1) Cq n−q. Therefore, ||Ln(f) −
Ln−1(f)||0 ≤ (C n3 log n + 1) (Cq + Cq−1) (n − 1)−q. From (2) we conclude

that the value q = 2p + 5 provides the desired result. 2

Corollary 1. The space C∞[−1, 1]d possesses an interpolating topological

basis.

Indeed, by Th.16 in [3], there is a sequence of points in [−1, 1]d for a

multivariate Newton interpolation with a polynomial grows of the corre-

sponding Lebesgue constants. The tensor products of ordinary divided dif-

ferences work now as biorthogonal functionals. Since for the set [−1, 1]d

both Markov’s type estimation and Jackson’s theorem are valid (see e.g.

[15] and [16] 5.3.2), we can repeat the proof for the univariate case.
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